Deep Image Demosaicking using a Cascade of Convolutional Residual Denoising Networks

نویسندگان

  • Filippos Kokkinos
  • Stamatios Lefkimmiatis
چکیده

Demosaicking and denoising are among the most crucial steps of modern digital camera pipelines. Meanwhile, joint image denoisingdemosaicking is a highly ill-posed inverse problem where at-least twothirds of the information are missing and the rest are corrupted by noise. This poses a great challenge in obtaining meaningful reconstructions and a special care for the efficient treatment of the problem is required. While there are several machine learning approaches that have been recently introduced to solve this problem, in this work we propose a novel deep learning architecture which is inspired by powerful classical image regularization methods and large-scale convex optimization techniques. Consequently, our derived network is more transparent and has a clear interpretation compared to alternative competitive deep learning approaches. Our extensive experiments demonstrate that our network outperforms any previous approaches on both noisy and noise-free data. This improvement in reconstruction quality is attributed to the principled way we design our network architecture, which also requires fewer trainable parameters than the current state-of-the-art deep network solution. Finally, we show that our network has the ability to generalize well even when it is trained on small datasets, while keeping the overall number of parameters low.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Dilated Residual Network for Image Denoising

Variations of deep neural networks such as convolutional neural network (CNN) have been successfully applied to image denoising. The goal is to automatically learn a mapping from a noisy image to a clean image given training data consisting of pairs of noisy and clean image patches. Most existing CNN models for image denoising have many layers. In such cases, the models involve a large amount o...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Regularization and Applications of a Network Structure Deep Image Prior

Finding a robust image prior is one of the fundamental challenges in image recovery problems. Many priors are based on the statistics of the noise source or assumed features (e.g. sparse gradients) of the image. More recently, priors based on convolutional neural networks have gained increased attention, due to the availability of training data and flexibility of a neural network-based prior. H...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018